114 research outputs found

    Robust optical flow with combined Lucas-Kanade/Horn-Schunck and automatic neighborhood selection

    Full text link

    A non-contact measurement system for the range of motion of the hand

    Full text link
    An accurate and standardised tool to measure the active range of motion (ROM) of the hand is essential to any progressive assessment scenario in hand therapy practice. Goniometers are widely used in clinical settings for measuring the ROM of the hand. However, such measurements have limitations with regard to inter-rater and intra-rater reliability and involve direct physical contact with the hand, possibly increasing the risk of transmitting infections. The system proposed in this paper is the first non-contact measurement system utilising Intel Perceptual Technology and a Senz3D Camera for measuring phalangeal joint angles. To enhance the accuracy of the system, we developed a new approach to achieve the total active movement without measuring three joint angles individually. An equation between the actual spacial position and measurement value of the proximal inter-phalangeal joint was established through the measurement values of the total active movement, so that its actual position can be inferred. Verified by computer simulations, experimental results demonstrated a significant improvement in the calculation of the total active movement and successfully recovered the actual position of the proximal inter-phalangeal joint angles. A trial that was conducted to examine the clinical applicability of the system involving 40 healthy subjects confirmed the practicability and consistency in the proposed system. The time efficiency conveyed a stronger argument for this system to replace the current practice of using goniometers

    Noncontact detection and analysis of respiratory function using microwave Doppler Radar

    Full text link
    Real-time respiratory measurement with Doppler Radar has an important advantage in the monitoring of certain conditions such as sleep apnoea, sudden infant death syndrome (SIDS), and many other general clinical uses requiring fast nonwearable and non-contact measurement of the respiratory function. In this paper, we demonstrate the feasibility of using Doppler Radar in measuring the basic respiratory frequencies (via fast Fourier transform) for four different types of breathing scenarios: normal breathing, rapid breathing, slow inhalation-fast exhalation, and fast inhalation-slow exhalation conducted in a laboratory environment. A high correlation factor was achieved between the Doppler Radar-based measurements and the conventional measurement device, a respiration strap. We also extended this work from basic signal acquisition to extracting detailed features of breathing function (I: E ratio). This facilitated additional insights into breathing activity and is likely to trigger a number of new applications in respiratory medicine

    Discrete Wirtinger-based inequality and its application

    Full text link
    In this paper, we derive a new inequality, which encompasses the discrete Jensen inequality. The new inequality is applied to analyze stability of linear discrete systems with an interval time-varying delay and a less conservative stability condition is obtained. Two numerical examples are given to show the effectiveness of the obtained stability condition

    Measurement of axial rigidity and postural instability using wearable sensors

    Full text link
    Axial Bradykinesia is an important feature of advanced Parkinson\u27s disease (PD). The purpose of this study is to quantify axial bradykinesia using wearable sensors with the long-term aim of quantifying these movements, while the subject performs routine domestic activities. We measured back movements during common daily activities such as pouring, pointing, walking straight and walking around a chair with a test system engaging a minimal number of Inertial Measurement (IM) based wearable sensors. Participants included controls and PD patients whose rotation and flexion of the back was captured by the time delay between motion signals from sensors attached to the upper and lower back. PD subjects could be distinguished from controls using only two sensors. These findings suggest that a small number of sensors and similar analyses could distinguish between variations in bradykinesia in subjects with measurements performed outside of the laboratory. The subjects could engage in routine activities leading to progressive assessments of therapeutic outcomes

    A mobile cloud computing framework integrating multilevel encoding for performance monitoring in telerehabilitation

    Full text link
    Recent years have witnessed a surge in telerehabilitation and remote healthcare systems blessed by the emerging low-cost wearable devices to monitor biological and biokinematic aspects of human beings. Although such telerehabilitation systems utilise cloud computing features and provide automatic biofeedback and performance evaluation, there are demands for overall optimisation to enable these systems to operate with low battery consumption and low computational power and even with weak or no network connections. This paper proposes a novel multilevel data encoding scheme satisfying these requirements in mobile cloud computing applications, particularly in the field of telerehabilitation. We introduce architecture for telerehabilitation platform utilising the proposed encoding scheme integrated with various types of sensors. The platform is usable not only for patients to experience telerehabilitation services but also for therapists to acquire essential support from analysis oriented decision support system (AODSS) for more thorough analysis and making further decisions on treatment
    • …
    corecore